

BAULKHAM HILLS HIGH SCHOOL

2016 YEAR 12 TASK 3 TERM 2 ASSESSMENTS

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 60 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 6-9
- Marks may be deducted for careless or badly arranged work

Total marks - 35

Exam consists of 8 pages and 4 Questions

Reference Sheet is on page 7 and 8.

Answer each question on the appropriate page. All necessary working should be shown in every question.

Question 1 (10 marks)

Marks

a) Use the substitution $u = x^2 + 1$ to find the indefinite integral

3

$$I = \int \frac{x \, dx}{\sqrt{x^2 + 1}}$$

b) Use the substitution $x = 3 \sin \theta$ to find the integral

3

$$\int_{\sqrt{3}}^{3} \sqrt{9 - x^2} \ dx$$

c) (i) Show that $\tan^{-1} x - x^2 + \frac{\pi}{4} = 0$ has a root in the interval $1 < x < \sqrt{3}$

2

(ii) Use one application of Newton's method to find an approximation to this root. Take x = 1.5 as the first approximation expressing your answer to one decimal place.

2

End of Question 1

(i)

a) Grain is poured at a constant rate of 0.25 cubic metres per second. It forms a conical pile, with the angle at the apex of the cone equal to 60° . The height of the pile is h metres, and the radius of the base is r metres.

(i) Show that $r = \frac{h}{\sqrt{3}}$

1

(ii) Show that V, the volume of the pile is given by $V = \frac{\pi h^3}{9}$

1

2

(iii) Hence find the rate at which the height of the pile is increasing when the height of the pile is 3 metres.

b) The acceleration of the particle P is given by the equation

$$\frac{d^2x}{dt^2} = 8x - 2x^3.$$

where x metres is the displacement of P from a fixed point O after t seconds. Initially, when x = 2 the velocity of the particle is 3 ms^{-1} .

Find the equation for v^2 .

(ii) Between which two points the particle is moving.

2

End of Question 2

Question 3 (9 marks)

- A particle is moving along the x-axis, starting from a position 2 metres to the right of the origin with an initial velocity of 5 ms⁻¹ and an acceleration given by $\ddot{x} = 2x^3 + 2x$.
 - (i) Show that $\dot{x} = x^2 + 1$.

3

(ii) Hence find an expression for t in terms of x.

2

b) A circus act consists of a person fired from a cannon at 30 metres per second on a platform 1 metre high. The moment the cannon is fired, a ball will be released 50 metres away, from a height of 18metres. Let $g = 10ms^{-2}$.

The equations of motion of the projectile of the person are :

$$x = 30t \cos \theta$$

DO NOT PROVE THESE

$$y = 1 + 30t \sin \theta - 5t^2$$

The equations of motion of the ball are:

$$x = 50$$

DO NOT PROVE THESE

$$y = 18 - 5t^2$$

(i) What is the angle at which the cannon must be fired so the person collides with the ball?

2

(ii) At what height does the person collides with the ball?

2

End of Question 3

Question 4 (7 marks)

Marks

1

2

1

- a) A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds it has displacement x metres, where $x = 4\cos^2 t 2\sin^2 t$.
 - (i) Show that $x = 1 + 3\cos 2t$.
 - (ii) Hence express the acceleration \ddot{x} ms⁻¹ of the particle in the form of $\ddot{x} = -n^2(x b)$
 - (iii) Which points is the particle oscillating?
 - (iv) At which point is the particle moving the fastest?

b) A spotlight is in the centre of a rectangular nightclub which measures 24 m by 16 m. It is spinning at a rate $\frac{d\theta}{dt} = 2\pi$ radians per second. Its beam projects a spot which moves along the walls as it spins.

24 m

- i) Find an expression for the velocity $\frac{dx}{dt}$ in terms of x at which the spot appears to be moving along the wall from A to B.
- ii) What is the velocity at which the spot appears to be moving at the point A?

End of Exam

BAULKHAM HILLS HIGH SCHOOL YEAR 12 EXTENSION 1-TASK-2 2016 SOLUTIONS

	Solution Term	Marks	Comments
1a)	$u = x^{2} + 1$ $du = 2xdx$ $I = \frac{1}{2} \int \frac{du}{\sqrt{u}}$ $I = \frac{1}{2} \int u^{-\frac{1}{2}} du$ $I = \frac{1}{2} \times 2 \times u^{\frac{1}{2}} + c$ $I = \sqrt{x^{2} + 1} + c$	3	3 marks Correct Solution 2 marks Integrates correctly and leaves in terms of u Significant progress towards the solution. 1 mark Correct expression for integral in terms of u
1b)	$x = 3\sin\theta$ $dx = 3\cos\theta d\theta$ $if x = 3,$ $3 = 3\sin\theta$ $\theta = \frac{\pi}{2}$ $if x = \sqrt{3}$ $\sqrt{3} = 3\sin\theta$ $\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ $I = \int_{\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)}^{\frac{\pi}{2}} \sqrt{9 - 9\sin^2\theta} \times 3\cos\theta d\theta$ $I = \int_{\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)}^{\frac{\pi}{2}} 3\cos\theta \times 3\cos\theta d\theta$ $I = 9\int_{\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)}^{\frac{\pi}{2}} 2(\cos2\theta + 1) d\theta$ $I = \frac{9}{2} \left[\frac{1}{2}\sin2\theta + \theta\right]_{\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)}^{\frac{\pi}{2}}$ $I = \frac{9}{2} \left[\left(\frac{1}{2}\sin\pi + \frac{\pi}{2}\right) - \left(\frac{1}{2}\sin\left(2\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)\right) + \frac{\pi}{6}\right)\right]$ $I = 2.18(2dp)$	3	3 marks Correct Solution 2 marks Correct integral in terms of dθ (incl. limits) 1 mark Correct integral in terms of dθ
1(i)	Let $f(x) = \tan^{-1} x - x^2 + \frac{\pi}{4}$ $f(1) = \tan^{-1} 1 - 1^2 + \frac{\pi}{4}$ $f(1) = 0.57 > 0$ $f(\sqrt{3}) = \tan^{-1} \sqrt{3} - \sqrt{3}^2 + \frac{\pi}{4}$ $f(\sqrt{3}) = -1.16 < 0$ Since $f(1) > 0$, $f(\sqrt{3}) < 0$ and $f(x)$ is continuous, then there is at least one root between $x = 1$ and $x = \sqrt{3}$	2	2 marks • Correct Solution 1 mark • States $f(x)$ is continuous • shows $f(1) > 0$ and $f(\sqrt{3}) < 0$

	Solution	Marks	Comments
1c(ii)	$f'(x) = \frac{1}{x^2 + 1} - 2x$ $f'(1.5) = \frac{1}{1.5^2 + 1} - 2(1.5) = -2.692$ $x_1 = x_0 - \frac{f(1.5)}{f'(1.5)}$ $x_1 = 1 - \frac{0.4818}{-2.692} = 1.1127 \dots$ $x_1 = 1.3$	2	2 marks • Correct Solution 1 mark • Correct use of formula with wrong values • finding f'(1.5)
2a(i)	In $\triangle OPA$, $\angle OPA = \frac{1}{2} \times 60^\circ = 30^\circ$ $\tan 30^\circ = \frac{r}{h}$ $r = h \tan 30^\circ$ $r = \frac{h}{\sqrt{3}}$	1	1 mark • Correct Solution
2a(ii)	Volume of the cone $=\frac{1}{3}\pi r^2 h$ $V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$ $V = \frac{\pi h^3}{9}$	1	1 mark • Correct Solution
2a(iii)	$V = \frac{\pi h^3}{9}$ $\frac{dV}{dt} = 0.25$ $\frac{dV}{dh} = \frac{\pi h^2}{3}$ When $h = 3$, $\frac{dV}{dh} = 3\pi$ $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ $0.25 = 3\pi \times \frac{dh}{dt}$ $\therefore \frac{dh}{dt} = \frac{1}{12\pi}$ $\therefore \text{ the height of the pile is increasing at a rate of } \frac{1}{12\pi} ms^{-1} \text{ when } h = 3$	2	2 marks • Correct Solution 1 mark • Finds a correct expression using $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$
2b(i)	$\frac{d}{dx} \left(\frac{1}{2}v^2\right) = 8x - 2x^3$ $\frac{1}{2}v^2 = 4x^2 - \frac{1}{2}x^4 + c$ $v^2 = 8x^2 - x^4 + 2c$ When $v = 3, x = 2$ $3^2 = 8(2)^2 - (2)^4 + 2c$ $7 = 2c$ $v^2 = 8x^2 - x^4 + 7$	2	2 marks • Correct Solution 1 mark • Uses $\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$

	Solution $v^2 = (7 - x^2)(1 - x^2)$	Marks	Comments
2b(ii)	$v^2 = (7 - x^2)(1 - x^2)$	2	2 marks • Correct Solution
	$v^{2} = (\sqrt{7} - x)(\sqrt{7} + x)(1 - x)(1 + x)$ Since $v^{2} \ge 0$		 Correct Solution I mark Finds all values of v = 0
	-\sqrt{7}		
	$-\sqrt{7} \le x \le -1 \ \ \text{or} \ \ 1 \le x \le \sqrt{7}$ Since it initially starts at $x=2$		
	$\therefore \ 1 \le x \le \sqrt{7}$		
·	(Note A better students solution would have explained: that at $x = 2$, $v = 3$.		
	As $x = \sqrt{7}$, $a < 0$ (ie. gradient of $v < 0$) so the particle moves left. As $x = 1$, $a > 0$ (ie. gradient of $v > 0$) so the particle moves right. And the particle will oscillate between $1 \le x \le \sqrt{7}$ and the motion is not in SHM.)		
3a(i)	$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = 2x^3 + 2x$ $\frac{1}{2}v^2 = \frac{1}{2}x^4 + x^2 + c$	3	3 marks • Correct solution by considering ±cases 2 marks
	When $t = 0, x = 2, v = 5$ $\frac{1}{2}(5)^2 = \frac{1}{2}(2)^4 + (2)^2 + c$		Finding a correct expression for v mark Finding c
	$c = \frac{1}{2}$		
	$v^{2} = x^{4} + 2x^{2} + 1$ $v = \pm \sqrt{(x^{2} + 1)^{2}}$		
	When $x = 2$, $v = 5$ $v = x^2 + 1$		
3a(ii)	$\frac{dx}{dt} = x^2 + 1$	2	2 marks • Correct Solution 1 mark
	$\frac{dt}{dx} = \frac{1}{x^2 + 1}$		• Correct expression for $\frac{dt}{dx}$
	$t = \tan^{-1} x + c$		
	When $t = 0, x = 2$ $c = -\tan^{-1} 2$		
	$t = tan^{-1}z$ $t = tan^{-1}x - tan^{-1}2$		
_	t = tan - x = tan - z		<u> </u>

	Solut	tion	Marks	Comments
3b(i)	$x = 30t \cos \theta$ $y = 1 + 30t \sin \theta - 5t^2$	$x = 20$ $y = 18 - 5t^2$	2	2 marks Correct Solution I mark
	To intercept, the x and y values must	be equal.		Equates the x and y equations
	$30t\cos\theta=20$			 Equates one equation to find θ
	$t\cos\theta = \frac{5}{3}$	(1)		equation to jima o
	$1 + 30t \sin \theta - 5$	$5t^2 = 18 - 5t^2$		
	$t\sin\theta = \frac{13}{36}$	7 (2)		
	$\frac{(1)}{(2)} = \frac{t \sin \theta}{t \cos \theta}$	$\frac{9}{9} = \frac{5}{3} \div \frac{17}{30}$		
	an heta	$=\frac{17}{50}$		
	$\theta =$	18°47' (to the nearest minute)		
3b(ii)	$t = {30 \sin \theta}$	17 n 18°47′	2	2 marks • Correct Solution 1 marks
	t = 1.7	'6 sec		• Finds t
	y = 18 - y = 2.51n	` '		
4a(i)	x = 1 +	3 cos 2t	1	I marks Correct Solution
	$x = \cos^2 x + \sin^2 x$	$+3(\cos^2 t - \sin^2 t)$		
	$x = 4\cos^2 x$	$c-2\sin^2 t$		
4a(ii)	$\dot{x} = -6$	sin 2t	1	1 marks
	$\ddot{x} = -12$	2 cos 2t		
	$\ddot{x} = -4(3)$	•		
	$\ddot{x} = -40$	(x-1)		
	Where $n=2$	and $b = 1$		
4a(iii)	the particle oscillates bet	ween $x = -2$ and $x = 4$	1	1 marks
	ie. −2 ≤	$\leq x \leq 4$		Correct Solution
4a(iv)	x = 1 +	3 cos 2t	1	1 mark
	The particle moves fastest at t	the centre of motion at $x = 1$		Correct Solution

<u> </u>	Solution	Marks	Comments
4b(i)	$\tan \theta = \frac{x}{8}$ $x = 8 \tan \theta$ $\frac{dx}{d\theta} = 8 \sec^2 \theta$ $\frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt}$ $= 8 \sec^2 \theta \times 2\pi$ $= 16\pi \sec^2 \theta$ $= 16\pi \left(1 + \tan^2 \theta\right)$ $= 16\pi \left(1 + \left(\frac{x}{8}\right)^2\right)$ $= 16\pi + \frac{\pi^2 x}{4}$	2	2 marks • Correct Solution 1 mark • Finds dx/dθ • Correct use of the chain rule with substitution.
4b(ii)	At A, $x = 0$ $\frac{dx}{dt} = 16\pi \left(1 + \left(\frac{0}{8}\right)^2\right)$ $= 16\pi$	1	1 mark • Correct Solution